博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[Hadoop]MapReducer工作过程
阅读量:6295 次
发布时间:2019-06-22

本文共 6039 字,大约阅读时间需要 20 分钟。

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/SunnyYoona/article/details/53939546
1. 从输入到输出

一个MapReducer作业经过了inputmapcombinereduceoutput五个阶段,其中combine阶段并不一定发生,map输出的中间结果被分到reduce的过程成为shuffle(数据清洗)。

shuffle阶段还会发生copy(复制)和sort(排序)。

在MapReduce的过程中,一个作业被分成Map和Reducer两个计算阶段,它们由一个或者多个Map任务和Reduce任务组成。如下图所示,一个MapReduce作业从数据的流向可以分为Map任务和Reduce任务。当用户向Hadoop提交一个MapReduce作业时,JobTracker则会根据各个TaskTracker周期性发送过来的心跳信息综合考虑TaskTracker的资源剩余量,作业优先级,作业提交时间等因素,为TaskTracker分配合适的任务。Reduce任务默认会在Map任务数量完成5%后才开始启动。

Map任务的执行过程可以概括为:首先通过用户指定的InputFormat类中的getSplits方法和next方法将输入文件切片并解析成键值对作为map函数的输入。然后map函数经过处理之后将中间结果交给指定的Partitioner处理,确保中间结果分发到指定的Reduce任务处理,此时如果用户指定了Combiner,将执行combine操作。最后map函数将中间结果保存到本地。

Reduce任务的执行过程可以概括为:首先需要将已经完成Map任务的中间结果复制到Reduce任务所在的节点,待数据复制完成后,再以key进行排序,通过排序,将所有key相同的数据交给reduce函数处理,处理完成后,结果直接输出到HDFS上。

2. input

如果使用HDFS上的文件作为MapReduce的输入,MapReduce计算框架首先会用org.apache.hadoop.mapreduce.InputFomat类的子类FileInputFormat类将作为输入HDFS上的文件切分形成输入分片(InputSplit),每个InputSplit将作为一个Map任务的输入,再将InputSplit解析为键值对。InputSplit的大小和数量对于MaoReduce作业的性能有非常大的影响。

InputSplit只是逻辑上对输入数据进行分片,并不会将文件在磁盘上分成分片进行存储。InputSplit只是记录了分片的元数据节点信息,例如起始位置,长度以及所在的节点列表等。数据切分的算法需要确定InputSplit的个数,对于HDFS上的文件,FileInputFormat类使用computeSplitSize方法计算出InputSplit的大小,代码如下:

 
  1. protected long computeSplitSize(long blockSize, long minSize, long maxSize) {
  2.    return Math.max(minSize, Math.min(maxSize, blockSize));
  3. }

其中 minSize 由mapred-site.xml文件中的配置项mapred.min.split.size决定,默认为1;maxSize 由mapred-site.xml文件中的配置项mapred.max.split.size决定,默认为9223 372 036 854 775 807;而blockSize是由hdfs-site.xml文件中的配置项dfs.block.size决定,默认为67 108 864字节(64M)。所以InputSplit的大小确定公式为:

 
  1. max(mapred.min.split.size, min(mapred.max.split.size, dfs.block.size));

一般来说,dfs.block.size的大小是确定不变的,所以得到目标InputSplit大小,只需改变mapred.min.split.size 和 mapred.max.split.size 的大小即可。InputSplit的数量为文件大小除以InputSplitSize。InputSplit的原数据信息会通过一下代码取得:

 
  1. splits.add(new FileSplit(path, length - bytesRemaining, splitSize, blkLocations[blkIndex].getHosts()));

从上面的代码可以发现,元数据的信息由四部分组成:文件路径文件开始位置文件结束位置数据块所在的host

对于Map任务来说,处理的单位为一个InputSplit。而InputSplit是一个逻辑概念,InputSplit所包含的数据是仍然存储在HDFS的块里面,它们之间的关系如下图所示:

当输入文件切分为InputSplit后,由FileInputFormat的子类(如TextInputFormat)的createRecordReader方法将InputSplit解析为键值对,代码如下:

 
  1.  public RecordReader<LongWritable, Text>
  2.    createRecordReader(InputSplit split,
  3.                       TaskAttemptContext context) {
  4.    String delimiter = context.getConfiguration().get(
  5.        "textinputformat.record.delimiter");
  6.    byte[] recordDelimiterBytes = null;
  7.    if (null != delimiter)
  8.      recordDelimiterBytes = delimiter.getBytes(Charsets.UTF_8);
  9.    return new LineRecordReader(recordDelimiterBytes);
  10.  }

此处默认是将行号作为键。解析出来的键值对将被用来作为map函数的输入。至此input阶段结束。

3. map及中间结果的输出

InputSplit将解析好的键值对交给用户编写的map函数处理,处理后的中间结果会写到本地磁盘上,在刷写磁盘的过程中,还做了partition分区)和 sort排序)的操作。

map函数产生输出时,并不是简单的刷写磁盘。为了保证I/O效率,采取了先写到内存的环形内存缓冲区,并做一次预排序,如下图所示:

每个Map任务都有一个环形内存缓冲区,用于存储map函数的输出。默认情况下,缓冲区大小是100M,该值可以通过mapred-site.xml文件中的io.sort.mb的配置项配置。一旦缓冲区内容达到阈值(由mapred-site.xml文件的io.sort.spill.percent的值决定,默认为0.80 或者 80%),一个后台线程便会将缓冲区的内容溢写到磁盘中。再写磁盘的过程中,map函数的输出继续被写到缓冲区,但如果在此期间缓冲区被填满,map会阻塞直到写磁盘过程完成。写磁盘会以轮询的方式写到mapred.local.dir(mapred-site.xml文件的配置项)配置的作业特定目录下。

在写磁盘之前,线程会根据数据最终要传入到的Reducer把缓冲区的数据划分成(默认是按照键)相应的分区。在每个分区中,后台线程按照建进行内排序,此时如果有一个Combiner,它会在排序后的输出上运行。

一旦内存缓冲区达到溢出的阈值,就会新建一个溢出写文件,因此在Map任务完成最后一个输出记录之后,会有若干个溢出写文件。在Map任务完成之前,溢出写文件被合并成一个已分区且已排序的输出文件作为map输出的中间结果,这也是Map任务的输出结果。

如果已经指定Combiner且溢出写次数至少为3时,Combiner就会在输出文件写到磁盘之前运行。如前文所述,Combiner可以多次运行,并不影响输出结果。运行Combiner的意义在于使map输出的中间结果更紧凑,使得写到本地磁盘和传给Reducer的数据更少。

为了提高磁盘IO性能,可以考虑压缩map的输出,这样会写磁盘的速度更快,节约磁盘空间,从而使传送给Reducer的数据量减少。默认情况下,map的输出是不压缩的,但只要将mapred-site.xml文件的配置项mapred.compress.map.output设为true即可开启压缩功能。使用的压缩库由mapred-site.xml文件的配置项mapred.map.output.compression.codec

指定,如下列出了目前hadoop支持的压缩格式:

压缩格式 工具 算法 文件扩展名 是否包含多个文件 是否可切分
DEFLATE* N/A DEFLATE .deflate
Gzip gzip DEFLATE .gz
bzip2 bzip2 bzip2 .bz2
LZO Lzop LZO .lzo

map输出的中间结果存储的格式为IFile,IFile是一种支持航压缩的存储格式,支持上述压缩算法。

Reducer通过Http方式得到输出文件的分区。将map输出的中间结果发送到Reducer的工作线程的数量由mapred-site.xml文件的tasktracker.http.threds配置项决定,此配置针对每个节点,而不是每个Map任务,默认是40,可以根据作业大小,集群规模以及节点的计算能力而增大。

4. shuffle

shuffle,也叫数据清洗。在某些语境下,代表map函数产生输出到reduce的消化输入的整个过程。

4.1 copy阶段

Map任务输出的结果位于Map任务的TaskTracker所在的节点的本地磁盘上。TaskTracker需要为这些分区文件(map输出)运行Reduce任务。但是,Reduce任务可能需要多个Map任务的输出作为其特殊的分区文件每个Map任务的完成时间可能不同,当只要有一个任务完成,Reduce任务就开始复制其输出。这就是shuffle的copy阶段。如下图所示,Reduce任务有少量复制线程,可以并行取得Map任务的输出,默认值为5个线程,该值可以通过设置mapred-site.xml的mapred.reduce.parallel.copies的配置项来改变。

如果map输出相当小,则会被复制到Reduce所在TaskTracker的内存的缓冲区中,缓冲区的大小由mapred-site.xml文件中的mapred.job.shuffle.input.buffer.percent配置项指定。否则,map输出将会被复制到磁盘。一旦内存缓冲区达到阈值大小(由mapred-site.xml文件mapred.job.shuffle.merge.percent配置项决定)或缓冲区的文件数达到阈值大小(由mapred-site.xml文件mapred.inmem.merge.threshold配置项决定),则合并后溢写到磁盘中。

4.2 sort阶段

随着溢写到磁盘的文件增多,shuffle进行sort阶段。这个阶段将合并map的输出文件,并维持其顺序排序,其实做的是归并排序。排序的过程是循环进行,如果有50个map的输出文件,而合并因子(由mapred-site.xml文件的io.sort.factor配置项决定,默认为10)为10,合并操作将进行5次,每次将10个文件合并成一个文件,最后有5个文件,这5个文件由于不满足合并条件(文件数小于合并因子),则不会进行合并,将会直接把5个文件交给Reduce函数处理。到此shuffle阶段完成。

从shuffle的过程可以看出,Map任务处理的是一个InputSplit,而Reduce任务处理的是所有Map任务同一个分区的中间结果

5. reduce及最后结果的输出

reduce阶段操作的实质就是对经过shuffle处理后的文件调用reduce函数处理。由于经过了shuffle的处理,文件都是按键分区且有序,对相同分区的文件调用一次reduce函数处理。

与map的中间结果不同的是,reduce的输出一般为HDFS。

6. sort

排序贯穿于Map任务和Reduce任务,排序操作属于MapReduce计算框架的默认行为,不管流程是否需要,都会进行排序。在MapReduce计算框架中,主要用到了两种排序算法:快速排序归并排序

在Map任务和Reduce任务的过程中,一共发生了3次排序操作。

(1)当map函数产生输出时,会首先写入内存的环形缓冲区,当达到设定的阈值,在刷写磁盘之前,后台线程会将缓冲区的数据划分相应的分区。在每个分区中,后台线程按键进行内排序。如下图所示。

(2)在Map任务完成之前,磁盘上存在多个已经分好区,并排好序,大小和缓冲区一样的溢写文件,这时溢写文件将被合并成一个已分区且已排序的输出文件。由于溢写文件已经经过一次排序,所以合并文件时只需再做一次排序就可使输出文件整体有序。如下图所示。

(3)在shuffle阶段,需要将多个Map任务的输出文件合并,由于经过第二次排序,所以合并文件时只需在做一次排序就可以使输出文件整体有序。

在这3次排序中第一次是在内存缓冲区做的内排序,使用的算法是快速排序第二次排序和第三次排序都是在文件合并阶段发生的,使用的是归并排序

7. 作业的进度组成

一个MapReduce作业在Hadoop上运行时,客户端的屏幕通常会打印作业日志,如下:

对于一个大型的MapReduce作业来说,执行时间可能会比较比较长,通过日志了解作业的运行状态和作业进度是非常重要的。对于Map来说,进度代表实际处理输入所占比例,例如 map 60% reduce 0% 表示Map任务已经处理了作业输入文件的60%,而Reduce任务还没有开始。而对于Reduce的进度来说,情况比较复杂,从前面得知,reduce阶段分为copy,sort 和 reduce,这三个步骤共同组成了reduce的进度,各占1/3。如果reduce已经处理了2/3的输入,那么整个reduce的进度应该为1/3 + 1/3 + 1/3 * (2/3) = 5/9 ,因为reduce开始处理时,copy和sort已经完成。

 来源于:《Hadoop 海量数据处理》

你可能感兴趣的文章
UI仿写 - 收藏集 - 掘金
查看>>
svg做自定义折线图表
查看>>
Koa源码分析(二) -- co的实现
查看>>
nohup和&的区别与关系
查看>>
UE4链接第三方库(lib和dll)
查看>>
phpstrom中让volt高亮显示
查看>>
macOS下nginx配合obs做推流直播.md
查看>>
数据结构——树
查看>>
浅析React之事件系统(二)
查看>>
Elixir 1.2带来多项功能增强和性能提升
查看>>
IPv6新形势下的安全解决方案
查看>>
红帽论坛北京站召开 设立亚太开放创新实验室
查看>>
函数式编程语言时代已经来临
查看>>
微软云数据库 Azure SQL DB Hyperscale如何实现超大规模存储和高可用?
查看>>
十年中文技术社区风雨之路 今晚4位老炮畅聊过去未来
查看>>
微软发起Java on Azure调查,呼吁Java社区积极参与
查看>>
SignalR Core尝鲜
查看>>
举重若轻的人人车移动端数据平台
查看>>
Swift 4.1增强了泛型、编译器和包管理器
查看>>
太多脚本将会毁掉持续交付
查看>>